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Abstract

We investigate a deformed matrix model of type 0A theory related to supersymmetric Witten’s

black hole in two-dimensions, generalization of bosonic model suggested by Kazakov et. al.

We find a free field realization of the partition function of the matrix model, which includes

Ramond-Ramond perturbations in the type 0A theory. In a simple case, the partition function

is factorized into two determinants, which are given by τ function of an integrable system.

We work out the genus expansion of the partition function. Holographic relation with the

supersymmetric Witten’s black hole is checked by Wilson line computation. Corresponding

partition function of the matrix model exhibits a singular behavior, which is interpreted as the

point of enhanced N = 2 worldsheet supersymmetry. Interesting relation of the deformed matrix

model and topological string on a Z2 orbifold of conifold is found.
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1 Introduction

Kazakov, Kutasov and Kostov [1] propose a matrix model dual to the Sine-Liouville theory,

which in turn is conjectured to be equivalent to the 2-D string theory admitting black hole

background described by a coset model of SL(2, R)/U(1) type. This is known as the Witten’s 2-

D black hole[2]. Sine-Liouville theory is the deformation of the usual Liouville theory by winding

modes or the condensation of vortices. In the matrix model side, winding mode perturbations

are described as the insertion of exponentiated Wilson line operator. In [3], it is shown that

the duality relation between the 2-D string theory on the Witten’s black hole and the deformed

matrix model could be understood in terms of gauge theory/gravity theory correspondence. In

[3], the proposed matrix model of Kazakov, Kostov and Kutasov [1] was shown to be a gauge

theory. This reparaphrased holography was checked by computing the Wilson line expectation

value and comparing it with the bulk computation. This check of the holographic relation was

made in the context of the bosonic string.

One motivation of this paper is to understand the holographic relation in the context of the

type 0A string. Obviously one can consider the Witten’s black hole with N = 1 worldsheet

supersymmetry in the type 0A setup. In addition, if we consider the 2-D supergravity action

describing low energy theory of the type 0A string theory, we can have a classical 2-D extremal

black hole solution[4]. This is argued to be dual to the type 0A matrix model with µ = 0

and nonzero f , where µ denotes the usual Fermi sea level and f is related to the Ramond-

Ramond(RR) flux in the type 0A string theory[5]. Also it is conjectured that non-extremal black

holes are described by the Wilson line deformation of the type 0A matrix model[5]. Thus it might

be interesting to work out the corresponding matrix models or gauge theories holographically

dual to these black hole solutions of the type 0A string theory. In [1], the partition function of

the underlying matrix model describing SL(2, R)/U(1) black hole background is given by the τ

function of an integrable system. We might guess that similar integrable structures underlie on

the type 0A matrix model dual to 2-D black hole backgrounds. We consider the type 0A matrix

model with exponentiated Wilson line operators which correspond to two kinds of winding

mode perturbations in the type 0A Liouville theory. Indeed we find a free field realization of the

partition function of the type 0A matrix model and find that turning on RR flux in the string

theory corresponds to the nonzero relative momentum in the free field representation. However

the analogue of the Hirota bilinear equation, which would give the needed differential equation

governing the partition function, is more complicated than the bosonic case.

The situation is greatly simplified if we consider turning on no RR flux and turning on

the same perturbations for both winding modes. This is again related to the Witten’s black

hole solution with N = 1 worldsheet supersymmetry. In this case the partition function is

decomposed into two determinants, which are described by the τ function again. The resulting
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partition function shows singular behavior at two points of the parameter spaces, which indicates

the vanishing of the mass gap or the emergence of the new degrees of freedom in the infrared. One

of the singularity is well known. Using the relation between c = 1 matrix model at the self-dual

radius and topological string on the conifold[6], this corresponds to vanishing of the 3-cycle of

the conifold and black hole state of the string theory on the conifold becomes massless[7]. From

the conformal field theory side, this means that the mass gap of the conformal field theory(CFT)

vanishes[8]. The other singularity is not known so far. The singularity structure is important

since the holographic relation holds for this point of the parameter space, as indicated by the

Wilson line calculations. We suggest that this singularity is related to the enhancement of the

worldsheet supersymmetry of N = 1 SL(2, R)/U(1) theory to N = 2 worldsheet supersymmetry.

Another interesting point is that the compactified radius of the type 0A matrix model indi-

cates that the theory is equivalent to some topological string, which is identified with the IIB

topological string on a Z2 orbifold of the conifold. It is well known that c = 1 matrix model at

the self-dual radius is equivalent to the IIB topological string theory on the conifold[6]. Here we

see that type 0A version of this relation is going to be useful in understanding the holographic

relation. According to [9], the underlying integrable structure of c = 1 matrix model can be

encoded into large symmetries of the conifold. This approach would be useful in elucidating the

integrable structures of the type 0A matrix models of our interest.

In section 2, we briefly review the various equivalences between two-dimensional CFT describ-

ing Witten’s black hole, Sine-Liouville theory and the corresponding matrix model for bosonic

case and introduces some preliminaries needed for type 0A generalizations. In section 3, we

introduce a deformed matrix model related to N = 1 2-D black hole. In section 4, we work out

the determinant representation and the factorization of the partition function in a simple case.

In section 5, we explicitly work out the free energy of the type 0A matrix model. In section 6,we

carry out Wilson line computation and in section 7, we comment on the relation to topological

string. In appendices, determinant representation and free field representation of the partition

function are worked out.

2 Review of bosonic case and preliminaries for type 0A case

Witten’s two-dimensional black hole is described by SL(2, R)/U(1) coset conformal field theory

with level k = 9
4 [2]. Its two-dimensional geometry is given by

ds2 = α′k(dr2 + tanh2 rdθ2) (2.1)

Φ = Φ0 −
1

2
log(cosh 2r + 1)
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where Φ is the usual dilaton field. This is derived by considering the bare Lagrangian of gauged

WZW model of SL(2, R)/U(1). For bosonic case there are additional α′ corrections[10][11].

According to the conjectures made by Fateev,Zamolodchikov and Zamolodchikov[12], this coset

CFT is equivalent to the Sine-Liouville theory

S =
1

4π

∫

d2σ[(∂x)2 + (∂φ)2 − QR̂φ + λebφ cos R(xL − xR)] (2.2)

with R = 3
2 , Q = 2 and b = −1

2 . In the paper [1], the matrix model equivalent to the Sine-

Liouville theory is constructed. We consider the c = 1 matrix quantum mechanics compactified

on a circle with radius R with a twisted boundary condition, whose partition function is given

by

ZN (Ω) =

∫

M(2πR)=Ω†M(0)Ω
DM(x) exp(−Tr

∫ 2πR

0
dx[

1

2
(∂xM)2 + V (M)]), (2.3)

where M(x) is an N ×N matrix-valued field on the circle and Ω is a unitary matrix. The form

of V (M) is

V (M) =
1

2
M2 − g

3
√

N
M3 (2.4)

but the precise form of the potential is not important in the double scaling limit. The proposed

matrix model is defined by the partition function

ZN (λ) =

∫

DΩeλTr(Ω+Ω†)ZN (Ω). (2.5)

In [1], it is shown that the matrix model (2.5) is equivalent to a modified version of the Sine-

Liouville theory

S =
1

4π

∫

d2σ[(∂x)2 + (∂φ)2 − 2R̂φ + µe−2φ + λe(R−2)φcosR(xL − xR)]. (2.6)

In a suitable limit where the term µe−2φ is negligible, the modified theory reduces to the Sine-

Liouville theory, which is equivalent to the black hole CFT.

We consider the generalization to the theories with N = 1 worldsheet supersymmetry. Type

0A Sine-Liouville theory contains two worldsheet superfield X with central charge c = 3
2 and φ

with c = 3
2 + 6Q2. The total central charge c = 15 determines Q =

√
2. On the other hand,

N = 1SL(2, R)/U(1) CFT with level k has the total central charge c = 3(k+2)
k . From c = 15

we obtain k = 1
Q2 = 1

2 . The two-dimensional geometry (2.1) is not renormalized with N = 1

worldsheet supersymmetry[13]. Hence the compactification radius R =
√

α′k and we obtain

R = 1
2 with the convention α′ = 1

2 and this is the same compactification radius of the time

direction X for the matrix model if the holographic relation holds. When we compactify X with

the radius R, we can have the superaffine theory as well as the usual type 0A theory. These

two theories differ by the GSO projections[14]. While the superaffine theory correlates the sum

over spin structures with the momentum and winding of X, the type 0A theory does not. For
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the supercoset model, it is natural to consider the GSO projections which do not correlate the

fermionic projections with the momentum and winding modes, which we call diagonal GSO

projections. Thus we look for the holographic relation between the type 0A theory and N = 1

supercoset with the diagonal GSO projections. For the type 0A case, matrix model should be

suitably generalized and this will be explained in the next section.

3 Matrix model of type 0A string

It is proposed in [14] that type 0A string in two dimensions has a matrix model realization

which is a quantum mechanics of a complex matrix. Our interest is on type 0A string whose

“time direction”, i.e. the direction corresponding to the free boson, is compactified on S1. The

compactification is realized simply by letting the time direction of the quantum mechanical

system be periodic. As mentioned in [14], the background RR flux can be introduced by adding

a Chern-Simons like term. The action of the matrix model is

S =

∫ 2πR

0
dx Tr

[

|Dxt|2 − 1

2α′
|t|2 + if(A − Ã)

]

. (3.1)

Here t(x) is an N × N complex matrix field on S1 with radius R. t(x) couples to the U(N)

gauge fields A, Ã through the covariant derivative

Dxt = ∂xt − iAt + itÃ. (3.2)

The constant f is the strength of the RR flux. If we interpret the matrix model as a quantum

mechanics based on D0-branes[16], the theory describes f D0-branes in type 0A theory

Note that there is i in front of the Chern-Simons like term since we have done the Wick

rotation. ¿From now on, we set α′ = 1/2.

We fix the gauge by the condition ∂xA = ∂xÃ = 0. Then the remaining degrees of freedom

of gauge fields are the zero modes A0, Ã0. These zero modes can be absorbed by defining a new

field t̃(x) as

t̃(x) = e−iA0xt(x)eiÃ0x. (3.3)

The new field t̃(x) obeys a twisted boundary condition

t̃(x + 2πR) = Ut̃(x)V †, (3.4)

where

U = exp(−2πiRA0), V = exp(−2πiRÃ0). (3.5)
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The action for t̃ is

S =

∫ 2πR

0
dx Tr

[

|∂xt̃|2 − |t̃|2
]

− fTr(log U − log V ), (3.6)

and the partition function is

ZN =

∫

DUDV Dt̃(x) e−S , (3.7)

where DU,DV are the Haar measures on U(N).

One can perturb the action (3.6) by the Wilson line operators. For the gauge choice we chose,

the Wilson line operators for the gauge fields A, Ã are proportional to TrU , TrV , respectively.

We will consider an action with a general perturbation

ZN (λ, λ̃) =

∫

DUDV Dt̃(x) e−S+W (U)+W̃ (V ), (3.8)

where

W (U) =
∑

n 6=0

λnTrUn, W̃ (V ) =
∑

n 6=0

λ̃nTrV n. (3.9)

Note that the above path integral is not well-defined since the potential is not bounded from

below. In the following, we will evaluate the path integral by first replacing the unbounded

potential with the ordinary harmonic potential with frequency ω, and then continuing ω to i.

The path integral of t̃(x) can be performed explicitly, since the system consists of N2 har-

monic oscillators with the twisted boundary conditions

t̃ij(x + 2πR) = ziz̃
−1
j t̃ij(x), (3.10)

where zi, z̃i are eigenvalues of U, V , respectively. The partition function is, after integration,

ZN (λ, λ̃) =
1

(N !)2

∮

∏

i

dzi

2πizi

dz̃i

2πiz̃i
ew(zi)+w̃(z̃i)

×
∏

i<j

|zi − zj|2|z̃i − z̃j |2
∏

i,j

ziz̃j

(ziq1/2 − z̃jq−1/2)(z̃jq1/2 − ziq−1/2)
, (3.11)

where q = exp(2πiR) and

w(z) = f log z +
∑

n 6=0

λnzn, w̃(z̃) = −f log z +
∑

n 6=0

λ̃nz̃n. (3.12)

Comparing with the bosonic case[1], we have two kinds of perturbations instead of one.

These correspond to the two winding mode perturbations in the Liouville theory. In the T-dual

0B theory, these correspond to the two kinds of momentum mode perturbations of the Liouville

theory and to the deformations of two Fermi seas in the dual matrix quantum mechanics[15],

[14]. In later sections, we show some evidences that there is holography between type 0A matrix
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model with a suitable deformation without RR flux and N = 1 Witten’s black hole. We expect

that more general cases with two kinds of winding mode perturbations correspond to black hole

solutions with two parameters in [4].

Note also that turning on RR flux simply corresponds to turning on log z perturbation. It

might be interesting to find integrable structures associated with the backgrounds with RR flux.

In the appendix B we show that the partition function admits a simple free field realization

which generalize the result at [18] where the free field realization for the case without RR

flux was discussed. There we see that turning on RR flux corresponds to nonzero relative

momentum of the two free bosons appearing in the free field realization. In the appendix B

we derive the analogue of the Hirota bilinear differential equation for the model. However the

resulting equation is more complicated and we do not reduce the equation into a known form

of τ functions. In the next section we show that the equation could be explicitly evaluated to

give the product of the τ function when two winding modes are the same, which dictates that

there should be no RR flux. Unlike the discussion in [18], this is the exact expression including

nonperturbative corrections. Thus it might be interesting to work out nonperturbative terms

and to compare the expression with the corresponding computations in the Liouville theory as

is done in[19].

4 Determinant representation and factorization

The expression (3.11) for the partition function can also be rewritten as

ZN (λ, λ̃) =
1

(N !)2

∮ N
∏

i=1

dzi

2πi

dz̃i

2πi
ew(zi)+w̃(z̃i)detij

(

1

ziq1/2 − z̃jq−1/2

)

detij

(

1

z̃jq1/2 − ziq−1/2

)

=
1

(N !)2

∮ N
∏

i=1

dzi

2πi

dz̃i

2πi
detij

(

e(w(zi)+w̃(z̃j))/2

ziq1/2 − z̃jq−1/2

)

detij

(

e(w̃(z̃j)+w(zi))/2

z̃jq1/2 − ziq−1/2

)

, (4.1)

by using the identity
∆(a)∆(b)
∏

ij(ai − bj)
= detij

(

1

ai − bj

)

, (4.2)

where ∆(a) is the Vandermonde determinant.

As in the bosonic case, it is more convenient to consider the grand canonical partition function

Z(λ, λ̃;µ) defined as follows,

Z(λ, λ̃;µ) =
∞
∑

N=0

e2πRµNZN (λ, λ̃). (4.3)
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This partition function has the following determinant representation

Z(λ, λ̃;µ) = Det(1 + e2πRµK), (4.4)

where

K(z, z′) =

∮

dz′′

2πi
K(z, z′′)K̃(z′′, z′), (4.5)

K(z, z′) =
e(w(z)+w̃(z′))/2

zq1/2 − z′q−1/2
, (4.6)

K̃(z, z′) =
e(w̃(z)+w(z′))/2

zq1/2 − z′q−1/2
. (4.7)

The calculation is summarized in appendix A.

When K = K̃, the determinant is factorized into two factors,

Z(λ, λ̃;µ) = Det(1 + ieπRµK) · Det(1 − ieπRµK̃). (4.8)

Note that in this case the RR flux f must vanish and λn = λ̃n. Remarkably, each determinant

factor is the partition function investigated in [1] with the chemical potential replaced with

(µ± i/2R)/2. Therefore, Z(λ, λ̃;µ) can be obtained by applying the same technique used in [1].

When all λ, λ̃’s vanish, the determinants can be calculated explicitly. One can show that 3

K · zn =

∮

dz′

2πi
K(z, z′)(z′)n

=







0, (n ≥ f/2),

qn+1/2−f/2zn, (n < f/2),
(4.9)

K̃ · zn =

∮

dz′

2πi
K̃(z, z′)(z′)n

=







0, (n ≥ −f/2),

qn+1/2+f/2zn, (n < −f/2),
(4.10)

K · zn =

∮

dz′

2πi
K(z, z′)(z′)n

=







0, (n ≥ −|f |/2),
q2n+1zn, (n < −|f |/2).

(4.11)

We have assumed that f/2 is an integer. Therefore one obtains

Det(1 + e2πRµK) =
∏

n<−|f |/2

(1 + ieπRµqn+1/2)(1 − ieπRµqn+1/2)

6= Det(1 + ieπRµK) · Det(1 − ieπRµK̃). (4.12)
3These calculations are done with q = exp(2πωR) > 1 and ω is analytically continued after the contour

integrations.
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This implies that the grand canonical partition function is not factorized into two determinants

in a similar way as in (4.8) when the RR flux is turned on.

5 Free energy of 0A matrix model with perturbation

5.1 Review of bosonic case

In [1], the c=1 matrix model with a perturbation is investigated and its free energy is calculated

perturbatively. The grand canonical partition function of this system is defined similarly to

(4.3), and this partition function also has the following determinant representation,

Z(λ, µ) = Det(1 + e2πRµK), (5.1)

where

K(z, z′) =
eu(z)+u(z′)

zq1/2 − z′q−1/2
, u(z) =

1

2

∑

n 6=0

λnzn. (5.2)

It is shown in [1] that when all λ’s except for λ±1 vanish corresponding to the Sine-Liouville

theory, the partition function Z(λ, µ) is obtained by solving a non-linear differential equation.

For χ(λ, µ) = ∂2
µF (λ, µ), where F (λ, µ) = log Z(λ, µ), the differential equation is

1

4λ
∂λ(λ∂λχ(λ, µ)) + ∂2

µ exp



−
(

sin(∂µ/2)

∂µ/2

)2

χ(λ, µ)



 = 0, (5.3)

where λ ∝
√

λ+1λ−1 and

sin(∂µ/2)

∂µ/2
=

∞
∑

n=0

(−1)n
2−2n

(2n + 1)!
∂2n

µ . (5.4)

F (λ = 0, µ) can be calculated explicitly,

∂3
µF (λ = 0, µ) = ∂3

µ

∞
∏

n=0

log(1 + e2πRµq−n−1/2)

= R Im

∫ ∞

0
dt e−it(µ−iǫ) t/2

sinh(t/2)

t/2R

sinh(t/2R)
, (5.5)

where ǫ = +0, and this quantity can be used as a boundary condition to the solution of the

differential equation (5.3).

To solve the equation (5.3), χ(λ, µ) is assumed to have a perturbative expansion whose

expansion parameter is a power of λ and the coefficient at each order is a function of y ∝ µ
λ2/(2−R) .
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Substituting this perturbative series into (5.3), the differential equation is reduced to an infinite

number of second order differential equations. In [1], they are solved explicitly up to genus one.

5.2 Type 0A case

We would like to evaluate the determinant

Z±(λ, µ) = Det(1 ± ieπRµK)|λ=λ̃, (5.6)

from which the grand canonical partition function of type 0A matrix model is obtained as

Z(λ, λ̃ = λ;µ) = Z+(λ, µ)Z−(λ, µ). (5.7)

One can see that Z±(λ, µ) is the same function as the bosonic partition function (5.1) with µ

replaced with (µ± i/2R)/2. Therefore, when all λ’s except for λ±1 are turned off, Z±(λ, µ) can

also be determined by solving the differential equation

1

4λ
∂λ(λ∂λχ±(λ, µ′)) + ∂2

µ′ exp



−
(

sin(∂µ′/2)

∂µ′/2

)2

χ±(λ, µ′)



 = 0, (5.8)

where µ′ = µ/2 and χ±(λ, µ) = ∂2
µ′ log Z±(λ, µ).

F±(λ = 0, µ) can be calculated explicitly as follows,

∂3
µ′F±(λ = 0, µ) =

R

i

∫ ∞

0
dt e−it(µ′±i/4R−iǫ) t/2

sinh(t/2)

t/2R

sinh(t/2R)

−R

i

∫ ∞

0
dt e+it(µ′±i/4R+iǫ) t/2

sinh(t/2)

t/2R

sinh(t/2R)

= −2R

∫ ∞

0
dt sin((µ′ ± i/4R)t)

t/2

sinh(t/2)

t/2R

sinh(t/2R)

= 2R Im

∫ ∞

0
dt e−it(µ′−iǫ) t/2

sinh(t/2)

t/4R

sinh(t/4R)

∓2iR Re

∫ ∞

0
dt e−it(µ′−iǫ) t/2

sinh(t/2)

t/4R

cosh(t/4R)
. (5.9)

¿From this expression, one can obtain the asymptotic expansion of χ±(λ = 0, µ),

χ±(λ = 0, µ) ∼ −2R log µ′ + 2R
∞
∑

N=1

fN (2R)µ′−2N

∓2iR
∞
∑

N=0

gN (2R)µ′−2N−1, (5.10)
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where

fN (2R) = (2N − 1)!
N
∑

k=0

|22N−2k − 2||22k − 2|
(2N − 2k)!(2k)!

|B2N−2kB2k|(2R)−2k2−2N ,

gN (2R) = (2N)!
N
∑

k=0

|22N−2k − 2|
(2N − 2k)!(2k)!

|B2N−2kE2k|(2R)−2k−12−2N−1. (5.11)

Here Bk, Ek are the Bernoulli number and the Euler number, respectively,

x

ex − 1
=

∞
∑

k=0

Bk

k!
xk, (5.12)

sech x =
∑

k=0

Ek

k!
xk. (5.13)

The asymptotic expansion (5.10) will be used as a boundary condition in solving the differential

equation.

We make an ansatz for χ±(λ, µ) as follows,

χ±(λ, µ) = −2R log µ′ +
∞
∑

n=0

µ′−nχ±,n(z), (5.14)

where χ±,n(z) is a power series in z = λ2/µ′2−2R, following [1], and obeys the boundary condition

χ±,0(0) = 0,

χ±,2n(0) = 2Rfn(2R),

χ±,2n+1(0) = ∓2iRgn(2R). (5.15)

According to [1], we make a change of variables from (µ′, z) to (λ, y) where

y = z−1/(2−2R) =
µ′

λ1/(1−R)
. (5.16)

Then the result is

χ±(λ, µ) = − 2R

1 − R
log λ +

∞
∑

n=0

λ−n/(1−R)X±,n(y),

X±,0(y) = −2R log y + χ±,0(y
−1/(2−2R)),

X±,n(y) = y−nχ±,n(y−1/(2−2R)). (n ≥ 1) (5.17)

Substituting this ansatz into (5.8) and setting to zero the coefficient of each power of λ, we

obtain the following set of equations,

(y∂y + n)2X±,n(y) + 4(1 − R)2∂2
y

(

e−X±,0(y)pn[X±]
)

= 0, (5.18)

10



where pn[X±] is defined as follows,

exp



−
∞
∑

n=0

xn

(

sin(x∂y/2)

x∂y/2

)2

X±,n(y)



 =
∞
∑

n=0

xne−X±,0(y)pn[X±]. (5.19)

Explicit forms of pn[X±] are

p0[X±] = 1,

p1[X±] = −X±,1,

p2[X±] = −X±,2 +
1

12
∂2

yX±,0 +
1

2
(X±,1)

2,

p3[X±] = −X±,3 +
1

12
∂2

yX±,1 −
1

12
X±,1∂

2
yX±,0 + X±,1X±,2 −

1

6
(X±,1)

3,

p4[X±] = −X±,4 +
1

12
∂2

yX±,2 −
1

360
∂4

yX±,0 −
1

12
X±,1∂

2
yX±,1 + X±,1X±,3

+
1

288
(∂2

yX±,0)
2 − 1

12
∂2

yX±,0X±,2 +
1

2
(X±,2)

2

+
1

24
(X±,1)

2∂2
yX±,0 −

1

2
(X±,1)

2X±,2 +
1

24
(X±,1)

4, (5.20)

etc.

(i) n = 0

The differential equation which we have to solve is

(y∂y)
2X±,0(y) + 4(1 − R)2∂2

ye−X±,0(y) = 0. (5.21)

In [1], this equation is solved and the solution is

y = e−X±,0/2R − (2R − 1)e(1−2R)X±,0/2R, (5.22)

which is valid for 0 < R < 1. For R > 1, there is no solution satisfying the boundary condition

(5.17). When R = 1/2, which would be relevant to the fermionic cigar geometry, the solution

has the simple form

X±,0 = − log y. (5.23)

Then the tree level contribution to F±(λ, µ) is

F±(λ, µ)|tree = −1

2
(µ′)2 log µ′ + A1µ

′λ2 + A2λ
4

= −1

2
(µ′)2 log µ′ + µ′2(A1z + A2z

2), (5.24)

where z = λ2/µ′. We have omitted terms which depend only on µ′. The constants A1, A2

can be fixed by matching this expression with the (3.7) of [1] with R = 1, and the result is

A1 = −1, A2 = 0.

11



(ii) n ≥ 1

From now on, we focus on the case R = 1/2.

One can see that pn[X±] has the structure

pn[X±] = −X±,n + p̃n[X±], (5.25)

where p̃n[X±] only contains X±,m with m < n. Then the equation (5.18) is

y(1 − y)∂2
yX±,n + (2 − (2n + 1)y)∂yX±,n − n2X±,n = ∂2

y (yp̃n[X±]) . (5.26)

This equation can be solved order by order in n. It is remarkable that the equation LHS= 0

is the hypergeometric equation, and therefore the general solution would have singularities at

y = 0, 1.

The solutions which satisfy the boundary conditions (5.17) are as follows,

X±,1 = ∓ i

2y
,

X±,2 = − 1

24y2
+

1

8(y − 1)2
,

X±,3 = ∓i

(

1

24y3
+

1

6(y − 1)3
+

1

8(y − 1)4

)

,

X±,4 = − 7

320y4
+

3

64(y − 1)4
+

17

32(y − 1)5
+

5

8(y − 1)6
, (5.27)

etc.

These results suggest that for general n the solution X±,n would have the following simple form

X±,n =
c

yn
+

2n−2
∑

k=n

ck

(y − 1)k
. (5.28)

where c, ck are rational numbers.

Now F±(λ, µ) can be obtained by integrating twice, and we obtain with z = 1
y when R = 1

2

and y = µ′

λ2

F±,1(λ, µ) = ∓ i

2
µ′ log µ′ + a±1 µ′z, (5.29)

F±,2(λ, µ) = − 1

12
log µ′ − 1

8
log(1 − z), (5.30)

F±,3(λ, µ) = ∓ i

µ′

(

1

48
+

1

12(1 − z)
+

z

48(1 − z)2

)

, (5.31)

F±,4(λ, µ) =
1

µ′2

(

− 7

1920
+

1

128(1 − z)2
+

17z

384(1 − z)3
+

z2

32(1 − z)4

)

, (5.32)

etc.
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Note that the terms depending only on µ′ in F±,0, F±,2 are a half of the corresponding part of

the usual genus expansion of the type 0A matrix model. Also all of F+,2n+1 terms are cancelled

against F−,2n+1 in the final expression of the free energy.

Note that we have two singularities in the expansion at y = 0 and y = 1. The singularities

at y = 0 corresponds to the limit µ′ → 0. This singularity appears even when we turn off

the deformations of the type 0A matrix model. For the bosonic case, this is interpreted as the

vanishing of the mass gap of the corresponding conformal field theory on the Witten’s black

hole background and the same interpretation could be applied to the type 0A case. If we use

the relation between the c=1 matrix model at the self-dual radius and the topological string on

the conifold, this singularity at y = 0 corresponds to the conifold singularity of the topological

string. The vanishing of the mass gap is translated into the appearance of the massless black

hole at the conifold point. Thus new states are added to the string perturbation theory near the

conifold. The singularities at y = 1 is hitherto unknown. ¿From the Wilson line computation

in the next section, we propose that this corresponds to the point of the enhancement of the

worldsheet supersymmetry from N = 1 to N = 2. It is desirable to collect further evidences for

this proposal.

Similar calculations can be done for the bosonic case with R = 1 and type 0B case with

R = 1/2. Type 0B case has the same differential equation as the bosonic case but with the

different boundary conditions, that is, the free energy of type 0B without perturbation is twice

of that of bosonic string.

Firstly, consider the bosonic case. The boundary condition at λ = 0 is

χb(λ = 0, µ) ∼ − log µ +
∞
∑

N=1

fN (1)µ−2N . (5.33)

We make an ansatz

χb(λ, µ) = − log µ +
∞
∑

n=0

µ−2nχb,n(z), (5.34)

where χb,n(z) is a power series in z = λ2/µ, following [1], and obeys the boundary condition

χb,0(0) = 0,

χb,n(0) = fn(1). (5.35)

Through almost the same procedure, we obtain for the bosonic case,

Xb,0 = − log y,

Xb,1 =
1

12y2
,
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Xb,2 =
1

40y4
,

Xb,3 =
5

252y6
, (5.36)

etc.

Here Xb,n(y) is defined as follows,

Xb,0(y) = − log y + χb,0(y
−1/(2−R)),

Xb,n(y) = y−2nχb,n(y−1/(2−2R)). (n ≥ 1) (5.37)

It is tempting to conjecture that

Xb,n =
fn(1)

y2n
(n ≥ 1), (5.38)

which implies that χb(λ, µ) is independent of λ. In fact, it can be proved that this is the case,

see appendix C.

For type 0B case, the boundary condition is

χB(λ = 0, µ) = 2χb(λ = 0, µ), (5.39)

but now R = 1/2. That is,

χB,0(0) = 0, χB,n≥1(0) = fn(1/2). (5.40)

The form of XB,n is not 2Xb,n since the equation is non-linear, and we obtain

XB,0 = − log y,

XB,1 =
1

12y2
+

1

8(y − 1)2
,

XB,2 =
1

40y4
+

9

64(y − 1)4
− 9

32(y − 1)5
,

XB,3 =
5

252y6
+

45

128(y − 1)6
+

1215

512(y − 1)7
+

1323

512(y − 1)8
, (5.41)

etc.

It looks that the type 0B result is simpler than the type 0A result. Note that XB,n corresponds

to X±,2n in the type 0A case.
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6 Wilson line

In [3], we showed that the vev of Wilson line operator along the (Euclideanized) time direction

provides the correct information on the target space geometry, assuming a holographic relation.

It is interesting to check whether a similar calculation can be done in the cigar geometry in type

0A string.

It is expected that the vev of the Wilson line is related to a holographically dual string theory

by the following relation,

〈W 〉 = 〈ei
∮

A〉 =

∫

DX e−Sp(X), (6.1)

where Sp(X) is the Polyakov action. There is another relation which uses the Nambu-Goto

action,
〈

1

N
ei
∮

A
〉

=

∫

DX e−SNG (6.2)

as is used in [3]. These two relations would be different if the two string theories are different

at the quantum level. At least we can say that the former has an advantage since the string

coupling dependence is manifest. In the following, we will use the former.

The leading order behavior comes from the classical value of the action. Since the worldsheet

of the string wraps all the spacetime, the worldsheet coordinates are identified with the spacetime

ones, and the worldsheet metric is also the same as the spacetime one. Then,

Sp =
1

2πα′

∫

d2x
√

g + Φ(0) − 1

4π

∫

d2x R(2) log(cosh r)

= k(Φ(0) − Φb) + Φ(0) + O(1), (6.3)

where Φb is the value of the dilaton at the point where the boundary theory lives. That is, the

Wilson line behaves as

〈W 〉 ∼ e−3Φ(0)/2. (6.4)

Let us compare this result with a quantity derived from the matrix model. The vev of the

Wilson line can be calculated as follows,

〈W 〉mm = 〈TrU〉 ∼ ∂λF (λ, µ′). (6.5)

Note that the vev of TrV is the same since the perturbation is symmetric.

If we consider a limit λ → ∞ while µ′ is fixed, in analogy with the bosonic case[3], we obtain

〈W 〉mm ∼ λ ∼ g−1
s , (6.6)

so this limit is not appropriate for the fermionic case. The correct behavior 〈W 〉mm ∼ g
−3/2
s of

the Wilson line is obtained by taking another limit λ, µ′ → ∞ while y is fixed. Therefore, the
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type 0A matrix model with the symmetric perturbation can be holographically dual to the type

0A string on the Witten’s black hole by taking the latter limit.

One interesting fact is that N = 1SL(2, R)/U(1) supercoset theory has an accidental N = 2

worldsheet supersymmetry [1]. Furthermore in [20], it is shown that the N = 1 supercoset

theory is mirror to N = 2 Liouville theory. Thus from the holographic point of view it is

natural that the limit of the deformed matrix model λ, µ′ → ∞ with y fixed corresponds to

the point of enhanced N = 2 worldsheet supersymmetry. This is an interesting matrix model

realization of N = 2 Liouville theory and we should look for further evidences for this holographic

relation. Note also that in terms of N = 1 superfield language, we are taking the limit where

the coefficient of N = 1 Liouville potential terms are vanishing while keeping the coefficient of

N = 1 sine-Liouville terms finite.

Note that we have considered the situation with y = O(1). This seems to be justified by the

singular behavior of the free energy at y = 1. The log(1 − z) term in the genus one free energy

(5.30) would imply that a massless state appears when we take y → 1 limit. This seems to be

consistent with the fact that, in the worldsheet theory, there is an IR fixed point at which the

supersymmetry is enhanced to N = 2. Note that at some general R, the structure of the tree

level free energy is almost the same as that of the bosonic one except for a scaling of R, which

would suggest that the type 0A matrix model with generic R describes N = 1 Liouville theory

with a perturbation as also claimed in [1]. According to this interpretation of the singularity

at y = 1, since this is an IR divergence, the singularity does not mean any inconsistency of the

model, and therefore the above calculation of Wilson line around y = 1 could be justified. Note

that the higher order contribution to the Wilson line can be finite and non-zero by fine-tuning

how fast y goes to 1, if the conjectured form (5.28) is correct. The above calculation suggests

that in order to use the deformed matrix model to describe N = 2 Liouville theory properly,

we should take account of additional degrees of freedom appearing in the limit of y → 1. If we

use the relation of the deformed matrix model to the topological string as explained in the next

section, we can gain some insights for the additional degrees of freedom to be included.

7 Relation to topological string

The free energy of type 0A matrix model is

∂3
µF0A = R Im

∫ ∞

0
dt e−it(µ−if−iǫ) t

sinh(t)

t/2R

sinh(t/2R)
, (7.1)
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while that of the bosonic string is

∂3
µFb = R Im

∫ ∞

0
dt e−it(µ−iǫ) t/2

sinh(t/2)

t/2R

sinh(t/2R)
. (7.2)

The bosonic case with R = 1 produces the partition function of type IIB topological string

on the conifold. The type 0A case with R = 1
2 and f = 0 gives the twice of the partition function

of the topological string on the conifold. Thus one might wonder if the theory is again related to

a topological string. Indeed it is argued in [21] that corresponding topological string is defined

on a Z2 orbifold of the conifold. The Z2 orbifold action on the conifold x′y′ = uv is given by

(x′, y′) → (−x′,−y′)

(u, v) → (u, v). (7.3)

If we choose invariant variables x ≡ x′2, y ≡ y′2, we have

xy = (uv)2 (7.4)

The deformation is given by

xy = (uv + µ)2 − f2

2
(7.5)

where f is related to the RR flux of type 0A model. It is explained in [21] that the geometry

given by eq. (7.5) has two S3 cycles, which are of size µ if f = 0. Thus in the µ → 0 limit,

two S3s are shrinking simultaneously. For y = 1 case of the previous section, this is related

to deforming the complex structures at infinities of the non-compact Calabi-Yau manifold with

conifold-like singularities[9]. In our case, we have the same deformations for both winding modes

and this should be related to the deformation of the curve uv+µ = 0. This would be quite close

to the bosonic case and equivalent picture is also developed in [17]. There the complex structure

deformation is mapped to the deformation of the Fermi sea profile. It would be interesting to

understand the integrable structures of the topological string on such Z2 orbifold of the conifold

related to the complex structure deformations at the asymptotic regions.
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A Determinant representation

The expression (4.1) can be written as follows,

ZN (λ, λ̃) =
1

(N !)2

∮ N
∏

i=1

dzi

2πi

dz̃i

2πi
detijK(zi, z̃j) detijK̃(z̃i, zj)

=
1

(N !)2

∮ N
∏

i=1

dzi

2πi

dz̃i

2πi

∑

σ∈SN

(−1)σ
N
∏

k=1

K(zk, z̃σ(k))
∑

σ′∈SN

(−1)σ
′

N
∏

l=1

K̃(z̃l, zσ′(l))

=
1

(N !)2

∮ N
∏

i=1

dzi

2πi

dz̃i

2πi

∑

σ∈SN

(−1)σ
N
∏

k=1

K(zk, z̃σ(k))
∑

σ′∈SN

(−1)σ
′

N
∏

l=1

K̃(z̃σ(l), zσ(σ′(l)))

=
1

(N !)2

∮ N
∏

i=1

dzi

2πi

dz̃i

2πi

∑

σ∈SN

(−1)σ
N
∏

k=1

K(zk, z̃σ(k))
∑

σ̃∈SN

(−1)σ̃(−1)σ
N
∏

l=1

K̃(z̃σ(l), zσ̃(l))

=
1

(N !)2

∮ N
∏

i=1

dzi

2πi

dz̃i

2πi

∑

σ∈SN

∑

σ̃∈SN

(−1)σ̃
N
∏

k=1

K(zk, z̃σ(k))K̃(z̃σ(k), zσ̃(k))

=
1

N !

∮ N
∏

i=1

dzi

2πi

∑

σ̃∈SN

(−1)σ̃
N
∏

k=1

∮

dz̃

2πi
K(zk, z̃)K̃(z̃, zσ̃(k))

=
1

N !

∮ N
∏

i=1

dzi

2πi

∑

σ̃∈SN

(−1)σ̃
N
∏

k=1

K(zk, zσ̃(k)). (A.1)

The summation over permutations can be rewritten as follows (see e.g.[22]),

1

N !

∮ N
∏

i=1

dzi

2πi

∑

σ∈SN

(−1)σ
N
∏

k=1

K(zk, zσ(k))

=
1

N !

∑

{dl}

′
∞
∏

l=1

((−1)l+1)
dl N !
∏∞

l=1(l!)
dldl!

∞
∏

l=1

(

l!

l

)dl ∞
∏

l=1

(

TrKl
)dl

=
∑

{dl}

′
∞
∏

l=1

1

dl!

(

(−1)l+1

l
TrKl

)dl

, (A.2)

where
∑′ represents the sum of dl with the constraint

∑∞
l=1 ldl = N . Then the grand canonical

partition function is

Z(λ, λ̃;µ) =
∞
∑

N=0

e2πRµNZN (λ, λ̃)

=
∑

{dl}

∞
∏

l=1

1

dl!

(

(−1)l+1

l
e2πRµlTrKl

)dl

=
∞
∏

l=1

exp

[

(−1)l+1

l
e2πRµlTrKl

]
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= exp
[

Tr log(1 + e2πRµK)
]

= Det(1 + e2πRµK). (A.3)

B Free field representation

The partition function (3.11) can be rewritten in terms of the free boson CFT[18]. Define two

free bosons

ϕα(z) = q̂α + p̂α log z +
∑

m6=0

Hα,n

n
z−n, (B.1)

where α = 1, 2 and

[p̂α, q̂β] = δαβ , [Hα,m,Hβ,n] = mδαβδm+n,0. (B.2)

Two linear combinations φ(z), φ̃(z) of ϕα(z), where

φ(z) = ϕ1(zq1/2) − ϕ2(zq−1/2), (B.3)

φ̃(z) = ϕ1(zq−1/2) − ϕ2(zq1/2), (B.4)

are relevant for rewriting (3.11), and one can show that

〈l|e−
∑∞

n=1
(tnHn+t̃nH̃n)

(
∮

dz

2πi

∮

dz̃

2πi
: eφ(z) :: e−φ̃(z̃) :

)N

e
∑∞

n=1
(t−nH−n+t̃−nH̃−n)|l〉

= (−1)N (N !)2qN(l1+l2)fl(t, t̃)ZN (λ, λ̃) (B.5)

where l = l1, l2 collectively denotes the eigenvalues of p̂α, f = l1 − l2 and

fl(t, t̃) = 〈l|e−
∑∞

n=1
(tnHn+t̃nH̃n)e

∑∞

n=1
(t−nH−n+t̃−nH̃−n)|l〉. (B.6)

We have defined that

Hα,n|l〉 = 0 (n > 0), p̂α|l〉 = lα|l〉, (B.7)

and Hn, H̃n are defined by the following expression of φ(z),

φ(z) = q̂ + p̂ log z +
∑

m6=0

Hn

n
z−n, (B.8)

and similar for tilder.

Let us define the following quantity

Tl(t, t̃) = fl(t, t̃)
∞
∑

N=0

e2πRµN qN(l1+l2)ZN (λ, λ̃). (B.9)
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By the momentum conservation, this can be written as

Tl(t, t̃) = 〈l|e−
∑∞

n=1
(tnHn+t̃nH̃n)g(µ)e

∑∞

n=1
(t−nH−n+t̃−nH̃−n)|l〉, (B.10)

where

g(µ) = exp

(

eπRµ
∮

dz

2πi
(eφ(z) − e−φ̃(z))

)

. (B.11)

There are two tensor operators

∑

α,β

mαβ

∮

dz

2πi
eϕα(zq1/2) ⊗ e−ϕβ(zq−1/2), m = σ1, σ3, (B.12)

which commute with g(µ) ⊗ g(µ). This commuting property leads to the following identities

∑

α,β

mαβ

∮

dz

2πi
〈l|e−

∑∞

n=1
(tnHn+t̃nH̃n)eϕα(z)g(µ)e

∑∞

n=1
(t−nH−n+t̃−nH̃−n)|k〉

×〈l′|e−
∑∞

n=1
(t′nHn+t̃′nH̃n)e−ϕβ(z)g(µ)e

∑∞

n=1
(t′−nH−n+t̃′−nH̃−n)|k′〉

=
∑

α,β

mαβ

∮

dz

2πi
〈l|e−

∑∞

n=1
(tnHn+t̃nH̃n)g(µ)eϕα(z)e

∑∞

n=1
(t−nH−n+t̃−nH̃−n)|k〉

×〈l′|e−
∑∞

n=1
(t′nHn+t̃′nH̃n)g(µ)e−ϕβ (z)e

∑∞

n=1
(t′−nH−n+t̃′−nH̃−n)|k′〉.

(B.13)

These equations provide infinite number of differential equations which contain quantities

Tlk(t, t̃) = 〈l|e−
∑∞

n=1
(tnHn+t̃nH̃n)g(µ)e

∑∞

n=1
(t−nH−n+t̃−nH̃−n)|k〉, (B.14)

and their derivatives. Since the operator g(µ) commutes with p̂1 + p̂2, Tlk(t, t̃) vanish unless

l1 + l2 = k1 + k2, but since it does not commute with p̂1 − p̂2, Tlk(t, t̃) is otherwise non-vanishing

in general, and the system of equations is more complicated than that obtained from the Hirota

bilinear equation for an ordinary integrable system.

One way to simplify the situation is to represent Tlk(t, t̃) in terms of Tl(t, t̃). Suppose that

l1 = k1 + m, l2 = k2 − m for a positive integer m. Then one can show that

Tlk(t, t̃) = Im ◦ Im−1 ◦ · · · ◦ I1

(

T
(m)
k (t, t̃)

)

, (B.15)

where

T
(m)
k (t, t̃) = 〈l|e−

∑∞

n=1
(tnHn+t̃nH̃n)

(
∮

dz

2πi
eφ(z)

)m

g(µ)e
∑∞

n=1
(t−nH−n+t̃−nH̃−n)|k〉, (B.16)

and Im is an integral transformation defined by

Im(f(µ)) = 2πR emπRµ
∫ ∞

µ
dµ′e−πR(m+1)µ′

f(µ′). (B.17)

T
(m)
k (t, t̃) can be written in terms of Tk(t, t̃) by moving all eφ(z) to the left, and therefore we

finally obtain a set of infinite number of integral-differential equations for Tk(t, t̃).
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C Proof of the λ-independence of the bosonic solution

The second derivative of the free energy of the c=1 bosonic string at the self-dual radius is

χb(µ) = − log µ +
∞
∑

N=1

2N − 1

2N
|B2N |µ−2N . (C.1)

To see that this is really a solution of the Toda equation (5.3), it is sufficient to see
(

sin(∂µ/2)

∂µ/2

)2

χb(µ) = − log µ. (C.2)

It is more convenient to consider
(

sin(∂µ/2)

∂µ/2

)2

∂µχb(µ) = − 1

µ
, (C.3)

and (C.2) follows from this.

One can show that
(

sin(∂µ/2)

∂µ/2

)2

∂µχb(µ)

= −2
∞
∑

K=0

(−1)K(2K)!µ−2K−1
K
∑

k=0

|(2k − 1)|B2k

(2k)!(2K − 2k + 2)!
. (C.4)

To evaluate the sum, let us calculate a related sum

f(x) =
∞
∑

K=0

K
∑

k=0

(2k − 1)B2k

(2k)!(2K − 2k + 2)!
x2K , (C.5)

which is

f(x) =
∞
∑

k=0

(2k − 1)B2k

(2k)!
x2k

∞
∑

l=0

x2l

(2l + 2)!

= − x2ex

(ex − 1)2
cosh x − 1

x2

= −1

2
. (C.6)

(C.3) follows from this result.
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